Integrability Formulas. Part I

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrability Formulas. Part II

The terminology and notation used here have been introduced in the following articles: [12], [13], [2], [3], [9], [1], [6], [11], [14], [4], [18], [7], [8], [5], [19], [10], [16], [17], and [15]. For simplicity, we use the following convention: a, x are real numbers, n is an element of N, A is a closed-interval subset of R, f , h, f1, f2 are partial functions from R to R, and Z is an open subse...

متن کامل

Integrability Formulas. Part III

For simplicity, we adopt the following convention: a, x denote real numbers, n denotes a natural number, A denotes a closed-interval subset of R, f , f1 denote partial functions from R to R, and Z denotes an open subset of R. One can prove the following propositions: (1) Suppose Z ⊆ dom((the function sec) · 1 idZ ). Then (i) −(the function sec) · 1 idZ is differentiable on Z, and (ii) for every...

متن کامل

Several Integrability Formulas of Special Functions. Part II

In this article, we give several differentiation and integrability formulas of special and composite functions including the trigonometric function, the hyperbolic function and the polynomial function [3]. For simplicity, we adopt the following rules: r, x, a, b denote real numbers, n, m denote elements of N, A denotes a closed-interval subset of R, and Z denotes an open subset of R. One can pr...

متن کامل

Several Integrability Formulas of Special Functions

In this article, we give several integrability formulas of special and composite functions including trigonometric function, inverse trigonometric function, hyperbolic function and logarithmic function. The notation and terminology used here are introduced in the following papers:

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Formalized Mathematics

سال: 2010

ISSN: 1898-9934,1426-2630

DOI: 10.2478/v10037-010-0004-z